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Abstract. We describe case studies of clinically significant changes in sedentary behavior of older adults captured with a novel
computer vision algorithm for depth data. An unobtrusive Microsoft Kinect sensor continuously recorded older adults’ activity
in the primary living spaces of TigerPlace apartments. Using the depth data from a period of ten months, we develop a context
aware algorithm to detect person-specific postural changes (sit-to-stand and stand-to-sit events) that define sedentary behavior.
The robustness of our algorithm was validated over 33,120 minutes of data for 5 residents against manual analysis of raw depth
data as the ground truth, with a strong correlation (r = 0.937, p < 0.001) and mean error of 17 minutes/day. Our findings
are highlighted in two case studies of sedentary activity and its relationship to clinical assessments of functional decline. Our
findings show strong potential for future research towards a generalizable platform to automatically study sedentary behavior
patterns with an in-home activity monitoring system.
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1. Introduction

As the population of people over the age of 65
continues to grow, so does the demand for innova-
tions to promote independence and to support ag-
ing in the place of one’s own choosing. Advances in
health monitoring technologies supplement the health-
care providers’ ability to identify vulnerable older
adults at risk for decline and to deliver timely care
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and services. Early signs of functional deterioration
may be reflected in deviations from daily routine activ-
ities [30,46]; hence, selection of sensitive behavioral
markers is crucial for the development of successful
health-monitoring systems, specifically for early inter-
ventions in the case of adverse predictions.

Sedentary activity has the potential to be a behav-
ioral predictor of functional decline. It is defined as
“any waking activity with low energy expenditure and
a sitting or reclining posture” [32]. As indicated by
literature, sitting has deleterious effects on health of
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older adults, increasing the risk of disability [14] and
falls [41], leading to medical complications and pre-
mature death. Nonetheless, the majority of older adults
spend 70 to 80% of their day sitting [32], embedding
this behavior in their daily routine. Any deviation from
regular sitting activity may signal a change in the older
adult’s cognitive or physical ability [11].

While the total time spent sitting per day has been
the most studied parameter of sedentary behavior, its
frequency, variability and temporal patterns may have
more subtle associations with the early signs of func-
tional decline [41]. Moreover, the quantity and quality
of postural transitions associated with sedentary activ-
ity, such as sit-to-stands and stand-to-sits, may be pre-
dictive of the older adult’s function, mobility and fall
risk [14]. The ability to capture multiple parameters
of these activities in the free-living environment in the
homes of independently living older adults will allow
us to reliably monitor changes in sedentary behavior
over time and to explore their relationship to clinically
significant outcomes, such as falls and functional dete-
rioration.

The aim of this explorative study is (1) to modify
existing computer vision algorithms for continuous in-
home Microsoft Kinect depth data that detects person-
specific postural changes associated with sitting in the
primary living area of senior apartments, and (2) to il-
lustrate changes in patterns of sedentary behavior that
may indicate preceding functional decline using a clin-
ical case studies approach. Since this is an observa-
tional study, the latter is based on the case studies re-
ferred to in this manuscript. However, the implications
of this study can allow us to test our algorithm in a
larger observational study that can then allow us to
generalize the outcomes based on a larger participant
study. In Section 2 of the paper, we discuss the existing
measurements of sedentary behavior, their limitations
and our proposed sensor of choice. Section 3 provides
details of our system architecture, algorithm assump-
tions, and subjects for multiple case studies. Algorithm
and its validation are presented in Section 4. Section 5
describes the selected case studies of clinical signifi-
cance. We discuss our work in Section 6 and examine
implications for future research in Section 7.

2. Background and related work

Inferring the relationship between sedentary behav-
ior and physical function in older adults requires ap-
propriate measures. A comparatively recent study from

behavioral epidemiologist Owen et al. [32] highlights
the significance of sedentary time as an indicator of
health decline or cardio-biomarkers. The most studied
sedentary behavior parameter has been the total time
spent sitting per day [14,32,41]. However, frequency,
variability and temporal patterns may have more subtle
associations with the early signs of functional decline
[8]. These parameters may require years of repeated
measures to identify baseline sitting “routine” and to
track the onset of health deterioration.

Much of the large-scale epidemiological research [1,
14,16,18,40,41] on sedentary behavior has been con-
ducted using wearable sensing modalities such as ac-
celerometers. Accelerometers measure the frequency
of lower extremity movement, most commonly at the
waist, and a specific threshold for movement counts
(usually <100 counts/min with 15 s epochs) defines
sedentary activity [8]. However, there is no evidence-
based consensus on the sampling rates or cut-off points
for these devices, especially for vulnerable older adults
with low cardiopulmonary fitness [18]. Moreover, sim-
ple accelerometers cannot distinguish between sitting
and standing still. Multi-sensor systems, such as com-
binations of inertial accelerometers, inclinometers and
gyroscopes can determine sitting behavior by detecting
both movement and posture via change in the angular
velocity at the waist [16].

While compliance of wearing these devices has been
established as fairly acceptable, the majority of stud-
ies have used them for short periods of time (mean =
7 days) [1,14,40]. In addition, several studies reported
missing data from lost, misplaced and non-functioning
devices [1,18]. Moreover, many of the subjects have
been healthy, active, community-dwelling women un-
der the age of 80 [1]. Hence, the assumptions about ac-
ceptability and compliance with wearable devices may
not be applicable to frailer, older adults in other free-
living settings [46]. Hence, wearable sensors are lim-
ited in long-term monitoring of sedentary behavior.

While non-wearable sensors are more unobtrusive
(i.e. embedded in the environment), their analysis re-
quires more complex, context-aware algorithms. Sev-
eral studies show promise in detecting heart rate and
respiration of a sitting subject with fiber Bragg grating
sensor [15], e-cushion [44], and web cam [31]. How-
ever, often these systems are tested in tightly controlled
laboratory settings with healthy young subjects; thus
the feasibility of their application to dynamic, unstruc-
tured environments with frail older adults can be con-
tested. A few systems with bed [22] and motion sen-
sors [19] have been tested in realistic settings, such as
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free-living apartments, but only for a short time peri-
ods. Moreover there is a dearth of studies that have re-
lated the processed data to clinical outcomes.

We propose to use a single Microsoft Kinect depth
sensor to monitor sitting behavior and assess the clini-
cal outcomes on a longitudinal basis. Microsoft Kinect
was originally designed to allow controller free game
play on the Microsoft Xbox (Microsoft, Redmond,
WA). Paired with the gaming console, it can track mo-
tion and recognize gestures, faces and voices. In 2011
its Standard Development Kit (SDK) was released to
non-commercial developers and since then it has been
used in a variety of research settings (Open Kinect;
Han, 2013). This low cost and robust device contains a
camera, a microphone array, and an infrared (IR) sen-
sitive camera (Fig. 1). The IR camera uses a pattern
of actively emitted IR light to create a depth image,
where the value of a pixel is dependent on the distance
to what it is viewing.

We use the Kinect IR camera output because com-
pared to standard visible sensors its performance re-
mains unaffected under low light conditions which
are common in apartment settings. The depth sensor
captures only 3D outlines of objects. This privacy-
protecting feature is an important consideration for un-
obtrusiveness in free-living environments. The SDK
provides skeletal tracking but it was not used because
of its limited range (approximately 1.5 to 4 meters
from the device). However, the depth data allows dis-
tinguishing between the postural changes of the person
to identify sitting as well as other features of the phys-
ical environment. In this way, we are able to contin-
uously and unobtrusively monitor in-home sedentary
activity of older adults.

3. TigerPlace system and subjects

To establish feasibility of using Kinect to measure
long-term changes in sedentary behavior, we expand

Fig. 1. The Microsoft Kinect sensor with the individual sensors la-
beled.

our work at TigerPlace [4,13,17,34,35,39,43] with a
system that monitors older adults’ daily activities in
their natural living environment. Forty-seven apart-
ments at this aging-in-place community have been
monitored unobtrusively for multiple years using a net-
work of motion, radar, depth and bed sensors [35].
Each resident’s activity data are supplemented with
monthly assessments of function and clinical notes
about health changes. Previous work has demonstrated
the effectiveness of using our in-home monitoring sys-
tem to detect early signs of illness using motion sen-
sors [17,34].

3.1. System specifications

The aim of using the Microsoft Kinect depth sen-
sor is to monitor activities in the primary living space,
including walking, falls [39] and sitting. Since one-
bedroom, single occupancy apartments are the most
common type of an assisted living residence [46], the
primary living space (separate from the bedroom) of-
ten includes living room space, dining room space and
part of the kitchenette if there is one. Preliminary work
showed that older adults spend the majority of their
time in this area that can be corroborated by the level
of activity captured by motion sensors in other parts of
the apartment.

To monitor activities in this part of the apartment,
Microsoft Kinect device is positioned with a slight
down tilt a few inches below the 9 ft. ceiling on a small
shelf above the front door (Fig. 2). Its angular field of
view (57° horizontally and 43° vertically), and the ex-
tended depth range of 2.3–19.7 ft. covers the major-
ity of the primary living space (168 sq. ft.) in a typical
one-bedroom apartment.

3.2. Assumptions and requirements

Our approach to detecting and monitoring sedentary
activity relies on the assumption that the majority of it
occurs in the primary living space. Often, older adults
have a favorite chair in the living space strategically
positioned near the window or a TV. This preference
of older adults for a “control center” is corroborated by
multiple studies in environmental psychology [25,29].

Hence, it is crucial for the proposed algorithm to be
context aware, or to robustly identify these “control
center” chairs in primary living spaces of apartments
with varying layouts. Moreover, these have the poten-
tial to change over time as the person moves the furni-
ture around. Another requirement for the proposed al-
gorithm to be person specific, that is it has to be able
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Fig. 2. Floor map of TigerPlace apartment with our in-home monitoring system consisting of motion and bed sensors (blue) and Kinect (black).
Kinect is mounted above the main entrance, covering in the main living area (green).

to distinguish between the activity of the resident and
that of the visitors (staff or family) or between two res-
idents cohabiting together.

3.3. Subjects

To achieve our study’s aim of linking long-term
changes in sedentary activity to health events, we fol-
lowed the multiple case study methodology to inves-
tigate clinical outcomes across residents with differ-
ent health conditions [45]. This design allows an in-
depth detailed exploration of trends in the behavioral
events using a small number of subjects. We chose five
TigerPlace residents with varying levels of physical ac-
tivity for this exploratory study of long-term changes
in sedentary activity as related to health events. The
subjects are diverse but overall representative of older
adults that reside in assisted living facilities [35], in
terms of age, gender and functional abilities. Our sam-
ple consists of three residents living alone and one
married couple. It is important to note that only 6–13%
of assisted living residents are couples [9,24] while
the majority of residents live in single occupant apart-
ments [24].

Our sample was on average 92 years old, 100% Cau-
casian, and 60% female. The residents have varying

Table 1

Resident characteristics

Resident 1* 2* 3 4 5

Gender Male Female Female Male Male

Age 98 91 88 99 88

Ambulation Self Walker Self Walker Self

# Diagnoses 4 5 4 15 21

Medications 10 10 19 18 22

Note: *Residents 1 and 2 are a couple and live together.

functional abilities, such as mobility status, number
of co-morbidities and medications and level of care
needed (Table 1). These are important factors to con-
sider in understanding changes in sedentary behavior.
Old age is associated with reduced physical activity, so
one may expect more time to be spent in the apartment
sitting. Men and women may have different lifestyle
preferences and routines that affect their sitting. Use
of assistive devices (such as a cane or a walker) dur-
ing ambulation is an important consideration because
it also affects postural changes as the person gets up
or sits down. Various medical conditions prevalent in
older age, such as musculoskeletal and cardiovascu-
lar problems, affect fitness and physical abilities; those
with a higher burden of disease (higher number of di-
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agnoses and medications) are more likely to be seden-
tary. Moreover, these residents have varying furniture
layouts to demonstrate the feasibility and generaliz-
ability of using Kinect in unstructured, dynamic set-
tings.

We chose to analyze data from a ten-month period
because this time frame is long enough for functional
changes and adverse health events (e.g. falls, depres-
sive symptoms) to occur. In Section 5 we describe two
case studies of observed changes in sedentary routines
preceding adverse health events, as well as their rela-
tionship to clinical screening tests.

4. Computing sitting from depth data

Our algorithm identifies postural changes (stand-to-
sit and sit-to-stand) in the context of the sitting areas
(Fig. 2). While Kinect has a skeletal tracking SDK to
identify standing and sitting [28], it requires the person
to be facing the sensor within a narrow depth range,
which is limiting in a natural living environment where
dynamic changes can occur in the course of the daily
living activities of a person. Further, we describe our
algorithm and validate the results against manually ex-
tracted “ground truth”.

4.1. Data filtering

Our continuous real-time data capture system stores
the raw depth data. A dynamic background subtraction
algorithm identifies foreground pixels from the depth
imagery of the Kinect using mixture of Gaussians ap-
proach [39]. For every movement detected in the apart-
ment, a motion file is generated with 3D information of
the moving object: height of the moving person, x and

y location i.e. the location of the centroid of the mov-
ing person in the X and Y plane with respect to the sen-
sor, and the time stamp. This information and the depth
data are used to compute sit-to-stand and stand-to-sit
events.

The depth data from the Kinect sensor can be noisy
because IR light scatters when it hits objects. To han-
dle this, we filter the height signal with the Savitsky-
Golay filter [37] that uses a least squares fit convolu-
tion for smoothing the signal. An example of the ex-
tracted foreground for a sit-to-stand event is shown in
Fig. 3.

4.2. Occlusion detection

The next step in our approach is occlusion detec-
tion. One of the major obstacles in dynamic activity
monitoring has been occlusion detection. Occlusion is
the obstruction of persons or objects from the sensor’s
field of view. This could be caused due to multiple rea-
sons such as objects blocking person from the sensor’s
field of view or due to a person entering or leaving
the field of view so part of the body is hidden from
the sensor. Since our algorithm uses data from actual
apartments, the scene is constantly changing: objects
such as furniture are constantly getting moved around;
people are constantly moving around; and visitors like
housekeeping staff enter the apartment. This dynamic
environment creates a strong need to be able to de-
tect the presence of occlusion so that the relevant se-
quences can identified and further processed to gain
more information about the environment.

Several studies have tried to address this issue. In
[36], Rougier et al. used depth sensors to detect falls.
They addressed the problem of occlusion by identify-
ing occlusion as the complete disappearance of the sil-

Fig. 3. Example of a sit-to-stand event. The resident in the armchair is identified as the orange foreground against the blue ground plane (discussed
in Section 3.1) and the static black background. The height of the resident’s outline increases as he gets up, from (a) till he is completely
upright (e). The lower part of the person is occluded as he gets up because the armchair is facing away from Kinect.
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houette from the field of view. In [23], Hinterstoisser
et al. tried to address occlusion by extracting the sil-
houette of a given object by ignoring the pixels whose
depth value exceeds a certain threshold value.

However, both these techniques have disadvantages
that need to be addressed. For example, in [36], the au-
thors detect complete occlusion. However, it would be
extremely useful to detect partial occlusion since many
activities involve partial occlusion; especially in a dy-
namic environment. Similarly, the algorithm described
in [23] addresses occlusion by an approach similar to
the bilateral filtering approach described in [42] but
some pixel information gets lost in this approach that
may be useful to activity detection.

In order to address this, we utilize the method used
in one of our earlier work [3]. In that study, we used
a fuzzy inference based system approach to compute
the degree of occlusion using silhouette information.
The features include information such as bounding box
parameters (height and width of the minimum sized
bounding box that completely surround the silhouette),
and silhouette pixel distribution features (horizontal
and vertical projection information) that provide more
information about occlusion. The details for the fuzzy
rules are provided in [3]. The output from the fuzzy
inference system is the occlusion confidence or degree
of occlusion. This is a value between 0 and 1 with the
value 1 representing that the silhouette is completely
occluded and 0 representing that there is no occlusion
present.

Figure 4 provides an example of the different de-
grees of occlusion color coded so that the darkest color
represents the least occlusion and the lightest color
represent the highest occlusion. In this particular ex-

Fig. 4. Sample silhouettes color-coded to represent different occlu-
sion confidence values. The darker color represents lower degree of
occlusion of (Fig. 4(a) and (e)) and the lighter colors represent a
larger degree of occlusion with Fig. 4(c) having the highest confi-
dence value.

ample, Fig. 4(a) has an occlusion confidence of 0.1 and
Fig. 4(c) has an occlusion confidence of 0.8.

Once we obtain the degree of occlusion based on
this method, we learn the sit locations by identifying
the regions where there is maximum change in height
of a moving person. These locations are updated dy-
namically to account for scene changes, such as moved
furniture. In case of multiple residents we differentiate
the sit locations computed in Algorithm 1 using fuzzy
c means clustering [5].

4.3. Stand-to-sit detection

Algorithm 1 describes our method to detect stand-
to-sit events in dynamic environments using features
collected from the depth data. Before we extract the
activity patterns for the residents, we first “learn” their
sitting locations based on past behavior. We do this by
detecting the sitting locations of the people by com-
puting the minimum and maximum height of the peo-
ple for each location in the field of view. The locations
that have the highest change in the height values are
the identified sitting locations. Once we compute the
locations, our next step is to go deeper into the activi-
ties taking place in the room. Using the foreground in-
formation we extract from the continuous depth data
collected, we examine the foreground features to com-
pute activities associated with the sedentary behavior
patterns of the residents. From our empirical analysis
on data collected in laboratory settings, we observed
that when the person sits on a chair or a couch, the
foreground gets smaller and smaller as the depth val-
ues of the person get closer to that of the stationary
chair or couch and blend with the background. This
leads to increase in the occlusion confidence of the ac-
tivity over time. Using this increase in occlusion confi-
dence over time, we can successfully extract the sit-to-
stand and stand-to-sit events. This feature is important
to consider in a dynamic environment since it helps to
distinguish between other activities, such as bending
over the chair or picking something from the floor. In
these activities, there is lesser temporal change in the
occlusion confidence that helps filter out these events
and improve the accuracy of our algorithm.

4.4. Sit-to-stand event detection

The detection of sit-to-stand events is different from
the stand-to-sit ones. The motion files contain the in-
formation only when movement is above a certain
threshold. However, during the beginning of a sit-to-
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Algorithm 1 Stand-to-sit measurement algorithm

/∗ Initialization: Learning Prior Locations ∗/
Get the motion files recorded in the room for one week

For day = 1 to 7 do
Compute the max, min height stored at each
location

End For

Find the locations with the maximum change in height. Cluster the locations to find sitting locations. Remove
locations that have hits less than three per week.

/∗ Computing Stand-to-Sit ∗/
For day = 1 to nDays

For path = 1 to nPaths

If there is any change detected in the background,
recompute sitting locations.

End If
Obtain the height of the moving object as ht,

Obtain maximum height as maxHt
Compute the least distance dist to the sit locations

If dist > distThresh Or minHt > (maxHt − 20) then
continue

End If

Filter ht using Savitsky-Golay filter
Obtain x-y locations for path file as xLoc, yLoc
Compute temporal difference as dXYloc, dHt
Find times t1 where – (dHt) > htThresh
Find times t2 where dXYLoc > horzThresh
Compute intersecting times between t1 & t2 at t12
Compute the occlusion confidence as occConf
Compute temporal difference as dOccConf

If dOccConf over t12 > 0
Detected Stand-to-Sit

End If

End For
End For

stand event no motion file is saved because the person
is initially stationary and there is no foreground infor-
mation. Thus, we use raw depth data to get accurate in-
formation about the context. To compute this upward
motion, we use the optical flow method.

4.4.1. Computing optical flow
Our method to detect sit-to-stand is described in Al-

gorithm 2. We implement an optical flow technique de-

scribed in [7] to detect large movements in the field of
view. It combines the local neighborhood information
of each pixel in the image along with the global fea-
tures of the image to extract motion information of the
objects present in the sensor’s field of view [7].

The advantage of using the combination of local
and global image features is that it is robust to Gaus-
sian noise while still being able to detect dense optical
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Algorithm 2 Sit-to-stand measurement algorithm

/∗ Initialization: Learning Prior Locations ∗/
Get the motion files recorded in the room for one week

For day = 1 to 7 do
Compute the max, min height stored at each
location

End For

Find the locations with the maximum change in height. Cluster the locations to find sitting locations. Remove
locations that have hits less than three per week.

/∗ Computing Sit-to-Stand ∗/
Load motion files and sit locations extracted
For day = 1 to nDays

For path = 1 to nPaths
If there is any change detected in the background,

recompute sitting locations.
End If

Obtain the parameters ht, maxHt, minHt, dist

If dist > distThresh Or minHt > (maxHt − 20) then
continue

End If

Filter ht using Savitsky-Golay filter
Obtain x-y locations for path file as xLoc, yLoc
Compute temporal difference as dXYloc, dHt
Find times t1 where dHt > htThresh
Find times t2 where dXYLoc > horzThresh
Compute intersecting times between t1 & t2 at t12
Compute the occlusion confidence as occConf,
Compute temporal difference as dOccConf

If dOccConf over t12 < 0
Obtain tEvent as the first time frame from t12
Extract videos starting from 2 seconds prior to
tEvent as tStart and ending at 2 seconds after
tEvent as tEnd
Run optical flow algorithm on the extracted
bounding box from tStart to tEnd
Find the number of frames with a positive upward
velocity as noUpFrames

If noUpFrames > 0
/∗ Detected Sit-to-Stand event

End If
End If

End For
End For
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Fig. 5. Sample depth images (pseudo-colored) of a TigerPlace resident getting up ((a) and (b)). The optical flow motion is shown in (c) with the
color coding format as shown in (d). As can be seen in Fig. 4(c), there is an upward motion that is detected using the optical flow method which
captures the sit-to-stand transition of the person as she gets up from the recliner.

flow fields i.e. concentrated regions with movement in
the same direction. Using this method, we can detect
an upward motion corresponding with the sit-to-stand
event. Figure 5 shows an example of the optical flow
method output for a sit-to-stand event. Here, images
frames (Fig. 5(a) and (b)) represent the depth images
of a resident getting up from a recliner in an apart-
ment at TigerPlace. These images are pseudo-colored
for visualization. Figure 5(c) shows the results after
using optical flow. Figure 5(d) shows the Waterbury
color coding scheme [2] to show the direction of mo-
tion. As can be seen in Fig. 5(c), the movement is in
the upward direction (upward-left to be exact). Hence,
this frame represents a person moving up and gets de-
tected as one of the frames with upward velocity. This
is then used by the algorithm (Algorithm 2) to calcu-
late the noUpFrames. This is then used to detect the
sit-to-stand events.

We use the occlusion confidence to detect the pos-
tural change, where a positive value indicates the resi-
dent getting up from a chair. This is the reverse of the
stand-to-sit pattern so instead of an increase in the oc-
clusion confidence measure, we see a corresponding
decrease for a sit-to-stand event. Moreover, to increase
the speed of the optical flow algorithm, we compute
the bounding box of movement for every frame in a
given depth sequence and compute the optical flow for
the pixels only within that bounding box area. This sig-
nificantly reduces the frame size and significantly im-
proves processing speed that is important for a contin-
uous monitoring algorithm.

Using these algorithms, we can successfully detect
sit-to-stand as well as stand-to-sit activity events as
well as the time and the location where these transi-
tions take place. Once we detect these events, we can
then compute the sedentary sitting time by taking the
time difference between the stand-to-sit and the cor-

Table 2

Validation results of the hybrid sitting time algorithm (STSALGO)
(mean hrs/day)

Resident
#

STSALGO
time

Ground
truth

Diff.
time

1 8.73 9.07 0.34

2 5.78 6.38 0.60

3 7.48 7.44 0.04

4 11.70 11.18 0.52

5 10.63 10.26 0.37

Average 7.95 8.21 0.27

responding sit-to-stand event to measure the time the
person was sitting during one sit activity event.

4.5. Algorithm validation

The algorithms yield the timestamp of each detected
posture change for each individual in a given time pe-
riod. We define a period of sitting as the time dif-
ference between a stand-to-sit posture change and the
next sit-to-stand from the chair. To validate the accu-
racy of the measured sitting times two independent
researchers observed raw depth videos and manually
recorded times of posture changes as “ground truth”.

Three methods were implemented on pilot data
from five TigerPlace residents. A total of 23 observa-
tion days, i.e. approximately 33,120 minutes of depth
videos (average 4 days/resident), were selected for the
manual validation (Table 2). We sampled a variety of
week days, weekends and holidays to account for vari-
ation in habitual sitting activities. Day to day variabil-
ity in sedentary behavior was affected by these tempo-
ral factors; hence we decided to aggregate the data into
larger time periods, such as weeks or months when ex-
amining long-term trends. The three methods include
(i) the rule based system to detect both the sit-to-stand,
as well as the stand-to-sit events (STSRB), (ii) the hy-
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Fig. 6. Bland Altman plot for Kinect algorithm versus manually extracted “ground truth”. Each blue point is a 24-hour observation. (Solid
black = mean difference, dotted black = 95% CI).

brid method that involves using optical flow to detect
sit-to-stand events, and the rule based method for the
stand-to-sit events (STSALGO), and (iii) the optical
flow method for detecting both sit-to-stand, as well as
stand-to-sit events (STSOF).

We found a strong correlation between the man-
ual extraction and the algorithm for daily sitting time
(STSALGO r(23) = 0.934, p < 0.001). The mean er-
ror across all observations was 17 minutes per day. The
Bland Altman Plot (Fig. 6) depicts the difference be-
tween the measurements by the two methods for each
observation against their means [6]. All but two obser-
vations fall within the 95% confidence interval, show-
ing agreement between the “ground truth” and our al-
gorithm. The major source of the error stems from a
few untypical days with multiple visitors; however our
assumption is that these rare cases do not affect the
general daily routine of sedentary activity.

Table 3 gives the comparison of the STSALGO with
other two methods: STSOF, and STSRB. With 21 de-
grees of freedom (23–2), all three methods are highly
significant at p < 0.01 with respect to the ground truth
values. Using the Intel quad core i5 3470 processor,
the computation times to compute the sitting times for
the ten month period per resident was approximately
equal to 62 hours (STSRB), 75 hours (STSALGO),
and 145 hours (STSOF). The average computation
time per resident per day is given in Table 3.

An interesting finding while comparison between
the three methods was that all three were significantly

Table 3

Validation results for the three methods using the pearson’s correla-
tion and the computation times (mean hrs/day)

Resident STSRB STSOF STSALGO

# SSE SSE SSE

1 0.13 0.1058 0.1156

2 0.41 0.358 0.36

3 0.041 0.01 0.0016

4 0.28 0.121 0.2704

5 0.15 0.116 0.1369

Pearson’s
correlation

0.89 0.945 0.934

Computation time
(per day in mins)

12.38 28.11 15.41

correlated with the ground truth at an alpha level of
0.95 for statistical significance. That said, if the accept-
able accuracy was greater than or equal to 0.9, then the
acceptable algorithms will be STSALGO and STSOF.
However, if there were computation restrictions, then
STSALGO and STSRB may be the more viable op-
tions. The other point to note here is that the aver-
age computation time for the STSOF is significantly
higher than the remaining counterparts because there
are more instances of potential stand-to-sit activities
(including false alarms like bending or detected height
changes due to the dynamic environment) that increase
the number of times the optical flow method executes
which causes the increase in computation time.
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These computation times are measured using the
Parallel Computing Toolbox available with Matlab
programming using the local computer. If more re-
sources are available, the algorithms can work much
faster with distributed computing spread across multi-
ple computers.

Overall, our algorithms were able to identify and
track sitting locations of multiple residents with dif-
ferent apartment and furniture layouts. Moreover, it
adapted to person-specific abilities. For example, an
older adult with an assistive device (Residents 2 and 4)
has a different sequence of postural changes associated
with a sit-to-stand event than a resident without one.
Our algorithm adjusted to handle occlusion generated
by the walker positioned in front of the chair as well as
the orientation of the chair with respect to the Kinect
sensor.

5. Clinical case studies

Our algorithm was able to reliably detect routine
sedentary behavior of older adults in their natural liv-
ing environment. To illustrate how this data can be
used clinically, we explore longitudinal changes in sit-
ting activity in the context of known health events.

We employ a retrospective multiple case study de-
sign that allows a detailed exploration of trends in the
behavioral events [45].

In accordance with the University of Missouri Insti-
tutional Review Board for human subject protection,
all personal data was de-identified. Our outcome of in-
terest is the daily sitting time, or the total duration of
all periods of sitting per day. It is aggregated either per
week (Case Study 1) or per month (Case Study 2) with
a corresponding mean and standard deviation.

We focused on two different timeframes to show
possible pattern changes preceding adverse health
events (e.g. falls). We also used monthly clinical as-
sessments extracted from the electronic health records
(EHR). Timed Up and Go (TUG) test performed by
licensed TigerPlace clinicians served as the predictor
of each resident’s function. TUG measures the time it
takes for a person to get up from a chair, walk 10 ft.,
turn around, walk back to the chair, and finally sit
down. Increase in TUG time is correlated with increase
in fall risk [33]. Hence, we hypothesize that as the res-
ident’s TUG score decreases they will be more seden-
tary.

5.1. Overall findings

We found that for our subjects the sitting time in
the living area ranged between 6–11 hours (35–64%
of the waking time). This indicates that sitting in the
living area is a large part of the resident’s daily rou-
tine. Hence, studying changes in this behavior over an
extended time period can provide insights to predict-
ing health decline of frail older adults. We present case
studies of these changes for (1) a single resident, and
(2) a couple inhabiting the same apartment.

5.2. Case study 1: Single resident

We present a case study of an 88-year-old female
TigerPlace resident (Resident 3) and explore trends in
her sedentary behaviors from October 2012 to January
2013. During this time period she experienced a num-
ber of health changes recorded by a clinician in her
EHR. Overall this resident has multiple chronic con-
ditions that include hypertension and vision problems.
She is independent in activities of daily living and am-
bulates without assistive devices. However, she needs
help with more complex activities, such as managing
her medications, finances and cooking.

From the data collected with the Kinect, we noticed
that the resident likes to sit in multiple locations (chairs
and the sofa), which were identified by the algorithm
as “control centers”. Over the period of 122 days we
captured 2,779 sitting episodes that lasted between 5
and 25 minutes (mean = 11 ± 3). On average, the
resident had 22 episodes of sitting per day (range =
5–54), which amounted to 4.91 hours (range = 0.86–
9.81) of daily sedentary behavior in the primary living
area. The number of sitting periods positively corre-
lated (r(122) = 0.779, p < 0.001) with the total sitting
time per day.

In establishing trends over time we decided to focus
on weekly rather than daily averages. High day-to-day
variability may be an artifact of a particular weekly
schedule [11], but a weekly mean may be more sensi-
tive towards the slow onset of functional changes. Fig-
ure 7 depicts the hours of daily sitting (blue line with
dotted error bars) and the number of daily sitting pe-
riods (grey columns with solid error bars) aggregated
per calendar week for the duration of four months.

Overlaid in red are the clinical notes extracted from
the EHR. During the month of December 2012 the res-
ident complained of depressive symptoms (red box).
On January 8, 2013 she fell in her bedroom at night
(red star). Later in the month she complained of mi-
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Fig. 7. Graph of Daily Sitting (left Y -axis, hours) and Daily Sitting Periods (right Y -axis, frequency count) averaged by week over a period of
four months from October 2012 to January 2013 for the single resident. The daily sitting duration is indicated by blue line with dotted error bars
and the number of daily sitting periods by the grey columns with solid error bars. The red dot over January 2013 indicates a fall reported by the
resident.

graine headaches, which prompted her to visit emer-
gency room (ER) on February 5, 2013 (not shown).

We included October and November activity as
“baseline” behavior because there were no complaints
recorded in the EHR. The monthly mean for October
is 6 hour of daily sitting with high week-to-week vari-
ability, but in November on average the resident was
sitting less, at 4.8 hours/day. This number decreased
even more in December to an average of 3.7 hours of
sitting/day. The trend is non-linear with a spike in ac-
tivity during the holiday week of December 23–29. Re-
gardless, this decline in sedentary behaviors continued
into January, with an average of 3.1 hours/day in the
week prior to the fall.

A change in such routine behavior may be driven
by poor health. It coincides with the appearance of de-
pressive symptoms and precedes a fall incident. This
hypothesis is supported by clinical assessments from
the EHR that also show a decline in function during
this time period. TUG time increased from 11.32 s
(within normal range for this age group) in November
to 13.87 s (close to 14 s cutoff for fall risk) [33] in
February.

Decreasing sedentary activity in the primary living
area may be explained by the resident’s decision to
spend more time in the bedroom due to poor health.

This observation is corroborated by the data collected
with passive infrared motion sensors in the bedroom.
These sensors are placed in each room of the Tiger-
Place apartment (Fig. 2); in the bedroom it is mounted
on the wall near the bedroom door [21,38]. There is
change in the activity detected from the motion density
maps, which corroborates with our detected change in
routine sitting behavior.

5.3. Case study 2: Couple

The second case study illustrates our algorithm’s ap-
proach to differentiate between multiple people inhab-
iting the same living space based on their favorite sit-
ting location. Note that in the two resident case, we
distinguished between the sit locations using the fuzzy
c means clustering technique with the number of res-
idents equal to the number of clusters. The advantage
of using fuzzy clustering is that it gives the best result
in the case of overlapping datasets [5]. This is useful
for both conditions: when there is noise in the depth
data information, as well as if the sitting locations can
vary, such as a couch so there is a degree of uncertainty
associated with the locations. It should be noted here
that we empirically tested the performance of both k

means and fuzzy c means for this case study for a pe-
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riod of four weeks (randomly selected days) and found
the fuzzy c means algorithm to better identify the sit lo-
cation clusters. For our validation study, the algorithm
was accurately able to associate one cluster with the
particular resident without error. However, it should be
noted that this couple has a very sedentary lifestyle
which further inhibits changes in their behavior pat-
terns.

We explore sedentary activity of a married cou-
ple that shares a one-bedroom apartment during
10 months, from January to October 2013. Resident 2
is a 91-year-old female who has a number of typi-
cal chronic conditions that include hypertension, di-
abetes and urinary incontinence. Resident 1 is 98-
year-old male with fewer diagnoses but over time his
health declined. He experienced a fall on January 7 and
again on May 21 2013, which prompted a trip to the
ER.

In the previous case study we aggregated daily sit-
ting activity by week, but here we chose to show a
long-term trend. We calculated mean and variance of
the daily total time spent sitting by month. Moreover,
we examined the relationship between the resident’s
sedentary activity and monthly clinical assessment of
function, TUG time.

Each resident’s individual trend in sedentary activity
(red line – female; blue line – male) and the two falls
experienced by the male (blue dots) are presented in
Fig. 8. We observe that the female resident has a more

stable trajectory of sedentary behavior. Throughout the
10-month period she spends on average 7.47 hours sit-
ting in the living room during the day (SD = 0.73,
range = 6.7–8.84). Her day-to-day variability during
the each month (designated by solid red error bars on
each time point) has a mean of 3.1 hours (SD = 0.55).

Meanwhile, the male resident shows a trend of de-
clining sedentary activity in the living room. In Jan-
uary he sits on average 10.53 hours/day while in Oc-
tober his daily sitting decreases to 5 hours/day. The
overall mean for 10 months is 6.6 hours while the vari-
ability is 2.04 hours, which is 2.7 times greater than
his spouse’s. His average day-to-day variability is also
higher (dotted blue error bars), at 3.7 ± 0.83 hours.
For the female resident, a fitted linear line has a slope
of −0.042, reflecting a stable trajectory, while for the
male resident the slope is −0.661.

This sharp decline in sitting is punctuated by two
falls the male resident experienced in January and
May. The female resident did not report any negative
health events during this time. Moreover, the male resi-
dent’s sedentary activity detected by our algorithm cor-
relates with clinical assessment of function. In Fig. 9,
daily sitting time negatively correlates with TUG time
(r(7) = −0.886, p < 0.05). As time spent sitting de-
creases, the time it takes to get up from a chair and
walk 10 ft. increases. Over the 10 months, TUG time
increases 50%, from 21.34 s in January to 31.00 s in
July. This relationship does not hold for the female res-

Fig. 8. Graph showing Daily Sitting mean and standard deviation in hours, aggregated by month, from January to October 2013 for two residents
(red line – female, blue – male). Blue dots are labeled as months when the male resident reported a fall (01/07/2013 and 05/21/2013).
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Fig. 9. Graph of monthly average Daily Sitting (left y-axis, hours) and daily STS (right y-axis, frequency count) with monthly TUG clinical
assessment (x-axis, s) for the male resident from January to October 2013.

ident (r(5) = −0.194, n.s.). Her TUG time fluctuates
from month to month within the range of 26–30 s.

6. Discussion

The two case studies illustrate differing trends
of sedentary behavior changes that precede adverse
health events. While, in general, increased sedentary
activity is associated with poor function in older adults
[14,41], we found that deviations from the daily seden-
tary routine (an increase or a decrease in average sit-
ting time, as well as its variability) may be associated
with acute events, such as falls. We found a negative
association between frequency and duration of sitting
and the clinical TUG assessments.

The resident chooses to sit less in the primary living
room area and there has been a change in his health
leading to a behavior deviation.

Our approach has the ability to distinguish between
the behavior patterns of multiple residents in the same
room, a limitation that has been cited in studies with
environmental sensors [39]. This was especially seen
in the case of the couple in the second case study. The
two residents have similar gait speed and height which
make it difficult to differentiate them using gait pa-
rameters such as walking speed, step length, and step
time as seen in [39], but they have their own “control
centers” or preferred sitting locations, which we can

learn and update dynamically. Using the fuzzy cluster-
ing approach (with the number of clusters equal to the
number of residents living in the apartment), we were
then able to distinguish between their differing sitting
patterns and detect changes in sedentary behaviors that
accompany functional decline of the male resident. We
would like to point out here that we have so far tested
our system on a single couple. However, this still is a
great stride towards detecting individual behavior pat-
terns which has not been explored in previous studies
for a multi-person environment.

The strength of our approach is that we were suc-
cessfully able to continuously collect and analyze be-
havior in real apartments of older adults for relatively
long time periods. Older adults experience functional
decline and adverse events over time. It may not be
captured in a short observation period of a week, which
has been a common time frame used with wearable
sensors [1,14,16,18,40,41]. This study highlights the
need for studies that analyze these behavior trends over
long times to detect the changes that can reflect any
functional decline that they may experience.

7. Conclusion and future work

We successfully detected sitting behavior patterns
in older adults with different lifestyles (ranging from
sedentary to active) and varying functional abilities
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(using a walker and requiring a caregiver to residents
who did not need any functional assistance) over long
periods of time. Since the algorithm was tested in
real apartment settings, the locations of the chairs and
couches varied widely in each living environment. The
direction of the sensor to these sitting locations also
varied widely for the five residents due to the dif-
ferent layouts of their apartments. We were able to
address challenging conditions like multiple residents
for a specific case study and handle dynamic environ-
ment challenges like occlusion for the five residents
described in this work. Our exploratory analysis points
to the relationships between temporal changes in rou-
tine patterns of sedentary behavior and functional de-
cline of older adults. It highlights the need to contin-
uously monitor these behavior changes in older adults
in order to gain useful insights about their mobility, as
well as predict their fall risk.

While we do not claim to have the perfect solution
for detecting sit-to-stand and stand-to-sit events, this is
a great step towards identifying these activities in dy-
namic and unstructured, and unscripted settings. Our
next step is to increase the sample size in order to sta-
tistically test our hypothesis with a larger pool of par-
ticipants. We plan to further explore these activities
and test our system on more couples living in indepen-
dent living facilities to see if we can find their individ-
ual patterns through temporal analysis.

In addition to increasing the number of participants,
we can explore other more nuanced parameters related
to sedentary behavior, such as duration and variability
of sitting periods that comprise an individual’s daily
sitting routine. Another parameter that we have not
yet rigorously validated is the actual sit-to-stand time,
a known clinical marker of mobility [44]. While this
measure has been tested consistently in clinical set-
tings, we need to be careful in measuring this in the
home environment since the time itself is less impor-
tant but the change in time may be a useful biomarker
if analyzed over time.

One drawback our monitoring has is that it is con-
fined to the primary living area of the apartments in or-
der to preserve the privacy of our participants. Hence,
we cannot account for sedentary activity in other areas
(such as bedroom and outside of apartment). However,
we can still capture an individual’s “baseline” sitting
routine and deviations from it. To overcome this limi-
tation, our algorithm can be used in conjunction with
sensing modalities of our system located in other parts
of the home environment, such as the bedroom where
we can capture activities related to sleep behavior us-

ing bed sensors [21] and bathroom related activities
using radar [20] as well as incorporating more activ-
ity related parameters such as gait parameters using
acoustic sensors [26] as well as Doppler radars [12,27].
This can provide an even deeper insight into the daily
routines of older adults in a non-intrusive manner.

Overall, our approach is strong as it is aligned with
current theoretical conceptualizations of sedentary ac-
tivity [8,32]. Kinect depth cameras can not only iden-
tify postural changes associated with sitting but also
can detect the specific context of the activity, such as
presence of a TV or other people in the apartment that
can influence a person’s behavior. The ability to cap-
ture both the person and the environment advances our
understanding of factors amendable to successful clin-
ical intervention [10].

Sedentary activity has the potential to be a new sen-
sitive behavioral marker for functional decline. A low-
cost Kinect depth sensor can improve the ability of
an in-home activity monitoring system to identify
changes that lead to a decline in health of older adults,
and alert caregivers of a need for intervention that
would lower the cost of healthcare and improve quality
of life for an aging population.
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